Some stable methods for calculating inertia and solving symmetric linear systems
نویسندگان
چکیده
منابع مشابه
Some Stable Methods for Calculating Inertia and Solving Symmetric Linear Systems
Several decompositions of, symmetric matrices for calculating inertia and solving systems of linear equations are discussed. New partial pivoting strategies for decomposing symmetric matrices are introduced and analyzed.
متن کاملSome Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems
and Applied Analysis 3 Instead of solving for y directly from the triangular linear system (15), Paige and Saunders [1] factorize the matrix Tn into a lower triangular matrix with bandwidth three (resulting in the SYMMLQmethod). Also, we have TnQn−1 = ̂ Ln = [ [ [ [ [ [ [ [ [ [ γ0 δ1 γ1 ε2 δ2 γ2 d d d εn−3 δn−3 γn−3 εn−2 δn−2 γn−2 εn−1 δn−1 γn−1 ] ] ] ] ] ] ] ] ]
متن کاملComparison of some Preconditioned Krylov Methods for Solving Sparse Non-symmetric Linear Systems of Equations
Large sparse non-symmetric linear systems of equations often occur in many scientific and engineering applications. In this paper, we present a comparative study of some preconditioned Krylov iterative methods, namely CGS, Bi-CGSTAB, TFQMR and GMRES for solving such systems. To demonstrate their efficiency, we test and compare the numerical implementations of these methods on five numerical exa...
متن کاملMethods for Solving Non-Linear Tasks for Calculating Construction Structures
The present article contains a brief description of several methods for solving non-linear tasks used when calculating the strength, stability and oscillation of construction structures. The investigated structures are: beams, thin-wall reinforced shells, including shells with fractures in the middle of the surface. Calculations are carried out with consideration of physical and geometrical non...
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1977
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1977-0428694-0